EFFECT OF DIFFUSION ON THE EVOLUTION OF A
GAS BUBBLE IN AN ACOUSTIC FIELD

L. E. Kolesnikov and V. V. Sobolev UDC 532.72

The effect of diffusion on the behavior of a gas bubble in the field of an acoustic wave and the
stability of its radial pulsations is investigated using numerical analysis. The surrounding
liquid is assumed to be viscous and incompressible.

In the investigation of processes of gas cavitation, propagation of perturbations in a gas—liquid me~ .
dium, and other processes of similar type it is important to determine the effect of diffusion of the gas
dissolved in the liquid on the dynamics of the cavity and its stability in an acoustic field.

The behavior of a gas bubble in a liquid was investigated in [1] taking account of the molecular diffu-
sion of the gas at a constant external pressure. In [2] the solution was generalized to the case of variable
pressure. In these studies the diffusion equation was solved disregarding the convective term introduced
by the motion of the wall of the bubble. Experiments show that this is justified only for very slow changes
of the pressure in the liquid [3]. In [4] the diffusion of the gas into the bubble in the field of an acoustic
wave was determined taking account of the convective term in the diffuse boundary-layer-approximation.
The problem of diffusion of gas into a spherical cavity expanding at a constant rate is investigated.in [5].
The effect of diffusion on the behavior of a cavitation gas bubble in an acoustic field has been investigated
also in [6). In [3-6] the problem is investigated by approximate methods. In [6], in particular, a quasi-
stationary approach to the diffusion process is used, the inertial effects are taken into consideration, and
the ordinary differential equation thus obtained for the bubble radius is integrated numerically. The de-
pendence R(t) given in [6] agrees qualitatively with the results of the present article in the resonance case.

In the present article the evolution of the radius of a cavitation bubble and the stability of its radial
pulsations are investigated using numerical integration and taking diffusion into consideration for different
amplitudes and frequencies of the external acoustic field. The equation of nonstationary convective diffusion
is considered:
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v v Let us consider the stability of the radial pulsa-

. tions of a cavitation bubble. For this purpose we write
Fig. 2. Dependence of Pg and R on time t. the perturbed values of the radius R'(t) of the bubble,
gas pressure p'(t), and concentration of the gas dis-
solved in the liquid ¢'(r, t) in the form
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where £, 7, ¢ are, respectively, the perturbations of the radius, the gas pressure, and the concentration.

Substituting (7)-(9) into (1), (2), (6) and linearizing with respect to &, 17, and £ we obtain a system of
equations for these quantities: '
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Because of the complexity of Egs. (1), (2), (6), (10)~(12) it is very difficult to find their analytical
solution in the general case; therefore they were studied by numerical methods.

In (1) let us pass onto Lagrangian coordinates
y=B3(*—RY), T=p g Rat.

Here § is a positive constant introduced for the sake of convenience of numerical analysis.

In terms of variables y, 7 Eq. (1) becomes

dc o dc : '
. =D —1.. 13
Rar rﬁ(ﬁ dy? +46y) ' 13)

Equation (13) was approximated by an implicit three-layer finite-difference scheme of Crank—Nicol-
son type of the second order in both coordinates. The algebraic system of equations for the desired grid
functions was solved by the trial-run method. The computation was done in the strip 0 = y < L and was
terminated on reaching a prespecified value of 7. The computations were stable for almost all relations
of the steps of numerical integration, which were chosen after a number of tests from the consideration of
the best approximation of the difference scheme. Equation (10) for the perturbation of the concentration
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Fig. 3. Dependénce of x =6/ Fig. 4. Behavior of the perturbation £(t) of the radial motion of
R(t) on time t. cavitation bubble in the resonance (a) and preresonance (b) cases.

of the gas dissolved in the liquid was solved in the same way. Equations (2), (6), (11), (12) were integrated
by the Runge —Kutta method. The characteristic frequency w,of thebubble was calculated from the well-known
formula [7]. Resonance {w = wy), preresonance (w= 0.2w), and postresonance (w = 5up) conditions were con-
sidered. Everywhere the values Ry = 107 em, Py =1 atm were used. The amplitude of the external acous-
tic field was 0.5 atm in the resonance and preresonance cases and 100 atm in the postresonance case; the
value of 8 was 8 = 10.

On the basis of the characteristics of the diffusion process it can be assumed that it retards the process
of evolution of the bubble radius and increases the minimum radius Ry, iy of the bubble in the collapse
phase. This is due to the fact that diffusion effects the pressure balance at the boundary of the cavity. Dur-
ing the compression of the bubble the pressure inside it increases. Under the effect of diffusion processes
a part of the gas inside the bubble crosses over into the liquid, which leads to a decrease of the pressure
in the cavity. Since the radius of the bubble is inversely proportional to Pgs Rmin increases. The charac-
teristic dependence of the radius on t is shown in Fig. 1 for the resonance case without congidering vis~
cosity and surface tension. The dashed line shows the behavior of the radius with diffusion taken into
consideration. The behavior of Pg and R is shown in Fig. 2 for w = ). Here and in subsequent figures the
dashes show the behavior of the corresponding quantities with diffusion taken into consideration.

We note that in course of time the thickness 6 of the diffuse boundary layer near the surface of the
bubble increases, attaining its maximum value in the compression phase., The dependence of the quantity
x = 8/R{t) on t is shown in Fig. 3. Here for 6 we chose such a distance from the surface of the cavitation
bubble, at which the concentration reached 50% of its value at infinity.

The numerical analysis presented above shows that the diffusion processes make the radial pulsations
of the bubble less stable. The instability beging in the expansion phase when the pressure inside the bubble
increases. The behavior of the perturbation £(t) of the radial motion of the cavitation bubble is shown in
Fig. 4 for the resonance (Fig. 4a) and preresonance (Fig. 4b) cases.

The above discussion elucidates certain characteristics of the effect of diffusion on the evolution of gas
bubbles inthefield of an acoustic wave. ‘

NOTATION

is the concentration of dissolved gas;

is the radius of the bubble;

is the diffusion coefficient;

is the radial coordinate;

is the time;

is the liquid density;

is the characteristic frequency of the bubble;
is the frequency of the external field;

is the amplitude of the external field;

is the unperturbed pressure in the liquid;
ig the gas pressure in the bubble; -

is the coefficient of surface tension;

is the coefficient of viscosity of the liquid;
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is the mass of the gas in the bubble;
is the molecular weight; -
is the universal gas congtant;
is the gas temperature;
is the volume of the gas in the bubble;
is the perturbation of the radius;
is the perturbation of the pressure;
is the perturbation of the concentration.
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